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Decay of the classical Loschmidt echo in integrable systems
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We study both analytically and numerically the decay of fidelity of classical motion for integrable systems.
We find that the decay can exhibit two qualitatively different behaviors, namely, analgebraic decaythat is due
to the perturbation of the shape of the tori or aballistic decaythat is associated with perturbing the frequencies
of the tori. The type of decay depends on initial conditions and on the shape of the perturbation but, for small
enough perturbations, not on its size. We demonstrate numerically this general behavior for the cases of the
twist map, the rectangular billiard, and the kicked rotor in the almost integrable regime.
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I. INTRODUCTION

The study of the relation between classical and quan
dynamical chaos has greatly improved our understandin
the behavior of quantum systems. An issue which may b
interest in several situations is the stability of motion. In th
respect, even though Liouville equation, which governs
evolution of classical distribution functions, is linear, the e
ponential sensitivity of classical trajectories with respect
perturbing the initial conditions leads to a strong dynami
instability and characterizes classical chaos. Like the cla
cal Liouville equation, the Schro¨dinger equation is also lin
ear. However, the quantum evolution of states is stable
this qualitative difference is clearly apparent in t
Loschmidt echo numerical experiments of Ref.@1#. The
problem of the stability of quantum motion under perturb
tions in the Hamiltonian has recently gained a renewed
terest@2–16#, also in connection with quantum computatio
@17–19#. The quantity of central interest in these investig
tions is the fidelityf q(t) ~also called Loschmidt echo!, which
measures the accuracy to which a quantum state can b
covered by inverting, at timet, the dynamics with a per
turbed Hamiltonian. The main interest has been focused
classically chaotic systems for which, besides numerical
periments, some theoretical tools are available, such as
dom matrix theory and semiclassical methods. However
the general case, the phase space structure is mixed
chaotic components and islands of stability. If the moti
starts inside an integrable island, then it very much
sembles the motion in integrable systems. Contrary to c
otic systems, which are dynamically unstable but structur
stable, integrable systems are dynamically stable but v
sensitive to external perturbations. Therefore the analysi
the fidelity requires particular care and one may expect i
be dependent on initial conditions and on the type of per
bation. Indeed, the decay of fidelity in integrable systems
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been discussed in recent papers@11,20,21# and very different
behaviors have been found. Jacquodet al. have shown the
existence of a regime in which the quantum fidelity for cla
sically integrable systems decays as a power law, with
anomalous exponent of purely quantum origin@21#. Prosen
and Žnidaričhave instead discussed a regime in which qu
tum fidelity exhibits a much faster Gaussian decay@11#. Both
regimes have been also discussed by Eckhardt in his ana
of the decay of classical fidelity@20#, in which the problem
of the evolution of classical phase space densities has b
addressed for linearized flows.

In the present paper, we discuss the behavior of fide
for integrable classical systems. Besides being of interes
its own, our classical study will allow us to understand t
main mechanisms for the fidelity decay and therefore w
constitute a valuable reference point for the quantum an
sis. Let us state the main results of our paper. We show,
Hamiltonian integrable classical systems, the existence
critical border depending on theshapeof the perturbation,
which separates two different types of fidelity decay:
power law decay}1/tn, where n is the dimension of the
system, and a much faster decay of ballistic type. We st
that the type of decay depends on initial conditions and
the shape of the perturbation but, for small enough pertur
tions, not on its strength. We derive an analytical express
for the critical border. Our theoretical results have gene
validity and are confirmed by a numerical analysis on th
typical models of integrable systems: the twist map, the re
angular billiard, and the kicked rotor in the almost integrab
regime.

The outline of the paper is as follows. In Sec. II we d
velop a general theory for the decay of classical fidelity
integrable systems. Section III demonstrates numerically
validity of our theory in two different typical examples o
integrable systems, the twist map and the rectangular
liard, and in an almost integrable system, the kicked ro
Our conclusions are drawn in Sec. IV. Finally, in the Appe
dix, we discuss the long-time relaxation to equilibrium.

II. THEORY

The quantum fidelity is defined as the overlap at timet of
the statesuc(t)& and uce(t)&, obtained by the evolution o

/
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the same initial stateuc(0)& with the unperturbed Hamil-
tonian H0 and the perturbed HamiltonianH01eV, respec-
tively. The fidelity is then given by

f q~ t !5u^c~ t !uce~ t !&u2. ~1!

This expression can be equivalently rewritten in terms of
Wigner functions as

f q~ t !5~2p\!nE dnqdnpWe~q,p;t !W~q,p;t !, ~2!

where n is the number of degrees of freedom. Since
Wigner functions can be considered as the quantum ana
of the classical phase space densities, we define the clas
fidelity as

f ~ t !5E dnqdnpre~q,p;t !r~q,p;t !, ~3!

wherer,re are the square normalized classical phase sp
densities (*dnqdnpr25*dnqdnpre

251). We note thatf (t)
is the classical limit off q(t). As the density evolution is
unitary in both classical and quantum mechanics, instea
evolving two densities forward in time and calculating th
overlap, we may first evolve the initial densityr0 forward in
time with the unperturbed HamiltonianH0, and then evolve
this density backward in time with the perturbed Ham
tonian H01eV. We denote the density obtained in such
way asr2t . The fidelity is then given by the overlap of th
densityr2t with the initial densityr0:

f ~ t !5E dnqdnpr2t~q,p!r0~q,p!. ~4!

Such an approach is more convenient for our discussio
the classical fidelity of integrable systems.

For the following discussion we assume that the pertur
tion of the integrable system is of the Kolmogorov-Arnol
moser~KAM ! type, namely, for small enough perturbatio
eV, most of the tori of the system are only slightly deform
but not destroyed. Therefore for most of the tori the trans
mation from old action-angle variablesI ,Q to new ones
I 8,Q8 is possible, in such a way that the new actions
constants of motion of the perturbed system. To the first
der in the perturbation strengthe the transformation can b
written as

Q85Q1ef~ I ,Q!, ~5!

I 85I1eg~ I ,Q!. ~6!

After the forward unperturbed evolution up to timet we
have

Qt5Q01V~ I !t. ~7!

Then we perform a backward evolution of the perturbed s
tem from timet to time 2t, getting

Q2t8 5Qt82V8~ I 8!t. ~8!
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The frequency vectorsV andV8 characterize the linear~in
time! evolution of the angle variables in integrable system
Expressed in the original action-angle variables, the ove
evolution can be written as

Q2t5Q01@V~ I !2V8~ I 8!#t1O~e!, ~9!

where the error termO(e) is due to the change from one s
of variables to the other at timet and the reverse change
time 2t. Since the perturbation is small, we may write t
change in frequency as

V8~ I 8!5V~ I !1DV~ I !1
]V

]I
~ I 82I !1O~e2!, ~10!

whereDV[V8(I )2V(I ) denotes the change of frequenci
on the unperturbed torusI and I 82I gives the change of the
action variables caused by the perturbation@written in Eq.
~6! to the first order ine].

If we consider the angle variables to be uniformly distri
uted at the timet at which the motion is inverted, we ma
introduce the distribution

WIS DI

e D5
1

~2p!nE dnQ dFDI2@ I 8~ I ,Q!2I !]

e G , ~11!

which gives the probability density for the transition fro
the torus characterized by the action variablesI in the unper-
turbed coordinates to the torus with action variablesI 8 in the
perturbed coordinates. Thee scaling has been chosen in o
der for that functionWI itself does not depend one in the
linear approximation.

In the generic case, the motion on a torus is ergodic. It
however, not random and therefore, in order for Eq.~11! to
well describe transitions between the tori, one needs to c
sider an ensemble of tori in the vicinity of the chosen actio
I , as only for an ensemble of tori with different frequenci
we can expect the angle variables to be uniformly distribu
after a sufficiently long timet. Indeed, the spread of frequen
cies given bydV5(]V/]I )dI translates into the spread o
angle variablesdQ5dVt. The time for this spread in the
angle variable to become comparable to 2p is

tQ'
2p

S ]V

]I D n I

, ~12!

wheren I is the characteristic width of the initial phase spa
density distributionr0 along the action direction@to simplify
writing, we have given Eq.~12! for the one-dimensiona
case#. Thus, our theory based on Eq.~11! is valid for times
t.tQ .

Since the final angle variables, after the forward and ba
ward evolutions, depend on the actions of the perturbed
tem, we compute the distribution of the angle variables fr
the distribution of the perturbed actions as
2-2
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PI~Q2t2Q0 ;t !5WIS I 82I

e D U]„~ I 82I !/e…

]~Q2t2Q0!
U. ~13!

Using expressions~9! and ~10!, we obtain

PI~Q2t2Q0 ;t !

5
1

~et !n U]V

]I U
21

WIS F]V

]I G21S Q02Q2t1O~e!

et
2

DV

e D D .

~14!

This expression is the kernel for the combined forward a
backward evolution of the phase space densities.

We assume that the widthn I along the action direction o
the initial densityr0 is much larger than the change of th
action variable induced by the perturbation, that is,

n I@e max
I ,Q

ug~ I ,Q!u ~15!

@to simplify writing we have given condition~15! for the
one-dimensional case#. Therefore the effects of the forwar
and backward evolutions are felt mainly in the change of
angles variable. This means that the evolution from the ini
phase space densityr0 to r2t is given, up to corrections o
ordere, by

r2t~ I ,Q!5E dnQ8 PI~Q82Q;t ! r0~ I ,Q8!. ~16!

The fidelity f (t) can then be computed by insertingr2t into
Eq. ~4!.

The kernelPI(Q82Q) is stretched linearly in time, while
at the same time it moves ballistically~linearly with time!
with velocity DV. Under the assumption that the perturb
tion of the shape of the tori is not divergent~as is the case fo
most of the tori in a KAM regime!, the distributionWI(I /e)
has a bounded support which is determined by the chang
the shape of the tori due to the perturbation. We can see f
Eq. ~14! that at long times the argument of the functionWI is
given by2@]V/]I #21(DV/e). Therefore the long-time be
havior of PI depends on whether the value
2@]V/]I #21(DV/e) falls within the support ofWI or not.
In the first case,W̃I[WI„2@]V/]I #21(DV/e)… is different
from zero and therefore the kernelPI drops }1/tn. In the
latter case,W̃I50 and thereforePI drops ballistically. The
transition between these two regimes is determined by
equality

DI s

e
52F]V

]I G21 DV

e
, ~17!

whereDI s /e are the coordinates of the border of the supp
of WI .

We can therefore draw the following conclusions. If t
perturbation of a classical integrable system is such that
primary effect is the change of the shape of the tori, then
expected decay of fidelity is}1/tn. On the contrary, if the
change of the frequencies of the tori is the dominant effe
then we expect a ballistic decay of fidelity, that is, the cen
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of mass motion of the phase space densities after the forw
and backward evolutions is responsible for a drastic drop
fidelity. Such a decay takes place as soon as the cente
mass of the densitiesr2t and r0 are separated in the ang
variablesQ by more than their characteristic widthnQ . As
can be seen from Eq.~4!, the exact form of the fidelity drop
in the ballistic regime depends on the tails of the initial d
tribution r0. For instance, a Gaussian tail gives a Gauss
decay of fidelity, whereas a sharp border induces a sh
drop to zero of fidelity. Finally, it is important to stress th
the type of decay, power law or ballistic, depends on init
conditions and on the shape of the perturbation. Howeve
does not depend on the strength of the perturbation, prov
that it is sufficiently small. Indeed, Eq.~17! shows that
DI s /e is e independent~to the first order ine), sinceDV
}e.

III. NUMERICAL DEMONSTRATION

As the first example we consider the perturbed twist m
defined by

I t115I t1e cos~a!sin~Q t!,
~18!

Q t115Q t1I t111e sin~a!sin~ I t11!,

where the anglea determines the mixture between pure
perturbing the shape of the tori (a50) or purely changing
their frequencies (a5p/2). This parametrization allows u
to change the type of the perturbation without changing
overall magnitude. The change of frequency associated w
the perturbation is given by

DV5e sin~a!sin~ I !. ~19!

The conserved action variable of thee-perturbed system is
to the first order~in e) approximation, given by

I 85I 1e cos~a!
1

2sin~ I /2!
cosS Q2

I

2D . ~20!

Indeed, inserting this expression into mapping~18!, one can
easily verify thatI t115I t . The transition probability func-
tion WI for this system can thus be obtained by means of
~11!:

WI~DI /e!5
1

2pE dQdFDI

e
2

cos~a!

2 sin~ I /2!
cosS Q2

I

2D G ,
~21!

which gives

WI S DI

e
D 5

1

pAS cos~a!

2 sin~ I /2!
D 2

2~DI /e!2

. ~22!

The range of the support of the distributionWI is between
6cos(a)/@2 sin(I/2)#. The critical valueac for which DI s /e
52(]V/]I )21DV/e is therefore determined by
2-3
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tan~ac!5
1

2 sin~ I !sin~ I /2!
. ~23!

In Fig. 1 we show the numerically computed behavior
fidelity for this system as a function of time for various va
ues of the parametera. We take as initial phase space de
sity a rectangle centered around the point (Q5p,I 51) with
sides of lengthnQ5231023, n I5231022. The perturba-
tion strength ise51026. To compute fidelity, we follow the
evolution of N5104 trajectories, which att50 are uni-
formly distributed inside the above rectangle. The fidelity
then given by the percentage of trajectories that return b
to this region after the forward and backward evolutions.
all cases we observe an initial plateau during which the
delity does not decay appreciably. This plateau persists u
the timetp at which the width of kernel~14! or the shift of its
center becomes comparable to the widthnQ of the phase
space density along the angle variable. In either case
time is

tp}
nQ

e
. ~24!

According to Eq.~17!, we expect the behavior to chang
from algebraic decay to ballistic one at the value of the
rametera5ac . For the chosen initial conditions, Eq.~23!
givesac'0.892. Indeed, the change from an algebraic fid
ity decay f (t)}1/t when a,ac to a sharp drop of fidelity
whena.ac is clearly seen in Fig. 1.

An interesting feature is that an approaching the criti
value ac , we observe that the fidelity decay, power law
ballistic, sets in after longer and longer times. This fa
has a clear explanation: The valueW̃I5WI
„2@]V/]I #21(DV/e)…, which determines the long-time be
havior of the evolution kernel~14!, diverges close to the
critical valuea5ac @see Eq.~22!#. When the fidelity decay
is power law, we havePI5c/tn, with the constantc}WI .
Sincec becomes larger and larger close to the critical po
the fidelity decay must be postponed to longer and lon
times. On the other hand, when the long-time fidelity dec

FIG. 1. Fidelity decay for the twist map at various values of t
parametera50 ~full line!, 0.8 ~dashed!, 0.892 ~dot dashed!, 1.0
~dot dot dashed!, andp/2 ~dotted!. The }1/t decay is shown as a
thin dotted line.
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is ballistic, we can see from Eq.~14! that the argument of the
function WI goes outside the support ofWI after a time that
becomes longer close to the critical point. Only after th
time the fidelity drops off. Of course the decay cannot
postponed indefinitely since the exact condition~23! can be
satisfied only for a single torus, while we always deal with
family of tori upon which the initial phase space densityr0
rests.

We also checked numerically that, provided the pertur
tion is much smaller than the characteristic widthsn I of the
initial density@that is, requirement~15! is fulfilled#, the type
of behavior does not alter with changing the actual size
the perturbatione, as expected from our theory. We simp
rescale the timetp}1/e after which the fidelity decay starts
in agreement with Eq.~24!.

To illustrate the fidelity decay in integrable systems w
more than one degree of freedom, we consider the follow
system:

H~ I 1 ,I 2 ,Q1 ,Q2!5H0~ I 1 ,I 2!1eV~ I 1 ,I 2 ,Q1 ,Q2!,
~25!

where the unperturbed Hamiltonian

H05
a1

2
I 1

21
a2

2
I 2

2 ~26!

describes the motion of a particle bouncing elastically ins
a rectangular billiard and the perturbation is given by

V5cos~b!cos~Q1!cos~Q2!1sin~b!I 1I 2 . ~27!

Again, depending on the value of the parameterb, the per-
turbation mainly affects either the shape of the tori or th
frequencies. We use the first-order perturbation theory
Hamiltonian systems~see, e.g., Ref.@22#! to determine the
effects of the perturbation. What we need to find is a se
action-angle coordinates such that, to the first order in
perturbation strengthe, the Hamiltonian~25! in these coor-
dinates can be written as a function of only the followin
actions:

H~ I 1 ,I 2 ,Q1 ,Q2!5H8~ I 18 ,I 28!1O~e2!. ~28!

Introducing the generating function

G~ I 18 ,I 28 ,Q1 ,Q2!5I 18Q11I 28Q22
e cosb

2

3F sin~Q11Q2!

a1I 181a2I 28
1

sin~Q12Q2!

a1I 182a2I 28
G ,

~29!

we get

I 15
]G

]Q1
5I 182

e cos~b!

2 F 1

a1I 11a2I 2
cos~Q11Q2!

1
1

a1I 12a2I 2
cos~Q12Q2!G , ~30!
2-4



or
e

r

-

al

l
2,

at
o
lity

ely
our

tor

,
ere

ra-

s

DECAY OF THE CLASSICAL LOSCHMIDT ECHO IN . . . PHYSICAL REVIEW E68, 036212 ~2003!
I 25
]G

]Q2
5I 282

e cos~b!

2 F 1

a1I 11a2I 2
cos~Q11Q2!

2
1

a1I 12a2I 2
cos~Q12Q2!G . ~31!

Substituting the above expressions into the Hamiltonian~25!,
we get

H8~ I 18 ,I 28!5
a1

2

2
I 18

21
a2

2

2
I 28

21e sin~b!I 18I 28 . ~32!

The frequencies are then given by

V185
]H8

]I 18
5a1I 181e sin~b!I 28 , ~33!

V285
]H8

]I 28
5a2I 281e sin~b!I 18 . ~34!

Thus the frequencies changes read as follows:

DV15e sin~b!I 2 , ~35!

DV25e sin~b!I 1 . ~36!

As in the previous example, the above expressions allow
to find the transition probability function

WI~DI 1 /e,DI 2 /e!

5
2

p2

1

AS cos~b!

a1I 11a2I 2
D 2

2S DI 11DI 2

e
D 2

3
1

AS cos~b!

a1I 12a2I 2
D 2

2S DI 12DI 2

e
D 2

. ~37!

It can be seen that the support for the distributionWI is the
rectangle

uUu,
cos~b!

a1I 11a2I 2
, ‘ uVu,

cos~b!

a1I 12a2I 2
, ~38!

whereU5(DI 11DI 2)/e andV5(DI 12DI 2)/e.
In Fig. 2 we show the decay of fidelity for this system f

various values ofb. The parameters of the system have be
chosen as follows:a15(A511)/2, a251. In all cases the
initial phase space density is a hyper-rectangle cente
around I 151, I 251, Q151 and Q251 with all sides of
length n I 1

5n I 1
5nQ1

5nQ2
50.02. The perturbation param

eter ise5331024, and the number of trajectoriesN5105.
For the above initial conditions and parametersa1 , a2, the
critical valuebc which separates the power law and the b
listic fidelity decay is determined by equality~17! in the
direction of the U variable. Indeed, whenb increases,
03621
us
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2[]V/]I #21~DV/e! goes outside the support ofWI at first
along this direction. This gives

2S DI s

e D
U

5
cos~bc!

a1I 11a2I 2
5F S ]V

]I D 21

DVG
U

, ~39!

where the right-hand side is theU component of the vector

S ]V

]I D 21

DV5S a2
21 0

0 a1
21D S sin~bc!I 2

sin~bc!I 1
D . ~40!

Therefore we get

tan~bc!5
a1a2

~a1I 11a2I 2!2
. ~41!

Substituting the chosen values ofI 1 ,I 2 ,a1, anda2, we find
that the critical value is equal tobc'0.232. This theoretica
expectation is confirmed by the numerical data of Fig.
which show a crossover from a power law fidelity decay~for
b,bc) to a ballistic decay~for b.bc). The results are very
similar to the case of the twist map, including the fact th
close to the critical valueb5bc , the decay is postponed t
longer times. It should be stressed that the algebraic fide
decay, differently from the twist map case, is now invers
proportional to the square of the time, in agreement with
theoretical expectation for a two-dimensional system@see
Eq. ~14!#.

As a last numerical example, we consider the kicked ro
map that is given by

I t115I t1K sin~Q t!, ~42!

Q t115Q t1I t11 . ~43!

As is known, for K!1 the system is almost integrable
namely, its phase space is dominated by invariant tori. Th
is a stable fixed point at (Q5p,I 50) and a separatrix which
divides the phase space into two regions: a section of lib

FIG. 2. Fidelity decay for the rectangular billiard for variou
values of the parameterb50 ~full line!, 0.232 ~dashed!, 0.3 ~dot
dashed!, and p/2 ~dotted!. The }1/t2 decay is shown as a thin
dotted line.
2-5
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BENENTI, CASATI, AND VEBLE PHYSICAL REVIEW E68, 036212 ~2003!
tional motion around the stable fixed point inside the se
ratrix and a section of rotational motion outside the sepa
trix. We perturb the system by varyingK→K85K1e. The
important point is that the type of the perturbation chos
strongly affects the frequencies of the tori in the libration
section, while it mainly perturbs the shape of the rotatio
tori. Therefore the same system and perturbation should
to two completely different types of fidelity decays, pow
law or ballistic, depending on the choice of the initial cond
tions. Figure 3 confirms this expectation: if the initial dens
r0 is inside the separatrix the fidelity decay is ballistic, o
erwise it is power law.

IV. CONCLUSIONS AND OUTLOOK

In this work we have studied the decay of the fidelity
classical motion for integrable systems. Our main resul
the following: For small enough perturbations, the type
the decay of fidelity for integrable systems depends not
the strength of the perturbation but on its shape and on in
conditions. More precisely, the fidelity exhibits two com
pletely different behaviors, namely, an algebraic decay if
perturbation mainly affects the shape of the tori, and a fas
ballistic decay if the main effect of the perturbation is
change the frequencies of the tori. We have also given c
numerical demonstrations of the transition between the
types of behaviors, induced by changing the shape of
perturbation or the initial conditions.

This result poses interesting questions with respect to
quantum mechanical picture. Due to the corresponde
principle, there should exist regimes where both types
decay may be observed. It is however expected that,
small perturbations, quantum mechanics would favor
ballistic-type decay, as demonstrated in Ref.@11#. Indeed the
algebraic decay is due to the transitions between tori wh
for small perturbations, are suppressed in quantum mec

FIG. 3. Fidelity decay for the kicked rotor map withK50.3,
e5K82K51025, andN5104 trajectories, using two different ini-
tial phase space densities, one centered at the point (Q5p,I
50.2) ~full line! and the other centered at (Q5p,I 51.2) ~dashed
line!. In the first case the fidelity decays ballistically, in the lat
case inversely proportional to time. Both initial densities are 0
wide in theQ and I directions. The}1/t curve is shown as a thin
dotted line.
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ics, due to tori quantization and subsequent gaps betw
them. The classical-quantum correspondence will be
topic of further studies.

In the quantum context, it is also worth mentioning R
@23#, where the dynamics of a solid-state spin model of qu
tum computer is analyzed, in a regime close to integrabil
The fidelity of quantum computation under systema
Hamiltonian errors is found to decrease linearly with incre
ing quantum computation time. Unfortunately, these findin
cannot be directly compared to the results of our paper, s
the model considered in Ref.@23# has no evident classica
limit.
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APPENDIX: ASYMPTOTIC BEHAVIOR

The results of the preceding sections do not tackle
asymptotic decay of fidelity for integrable systems@24#. In-
deed, we neglected the contributions to the evolution ker
~14! that stem from the fact that the angle variables are
clic. This means that, after a time which is}2p/e, we need
to take into account the contributions to Eq.~14! not only at
Q2t2Q0 but also at allQ2t2Q012pk, wherek is a vector
of integer numbers.

We limit ourselves to the case of a single torus. Of cou
the fidelity f (t) is strictly zero for a single torus and there
fore it should be understood that we take the limits

e→0, n I→0 with
e

n I
5constant!1. ~A1!

Let us consider the initial densityr0(Q) to be defined on the
whole Q space~without 2p periodicity!, while the kernel
K I(Q;t) is defined as the periodic function obtained from t
original kernel:

K I~Q;t !5(
k

PI~Q22pk;t !. ~A2!

Assuming that the initial density is square normalized,
fidelity can be written as

f ~ t !5E dnQr0* ~Q!r2t~Q!5E dnFr̃0* ~F!r̃2t~F!,

~A3!

where; denotes the Fourier transform

r̃~F!5
1

A2p
E dnQr~Q!exp~2 i F•Q!. ~A4!

Since

2
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r2t~Q!5E dnQ8r0~Q8!K I~Q2Q8;t !, ~A5!

in the Fourier picture this becomes

r̃2t~F!5 r̃0~F!K̃ I~F;t !. ~A6!

We may write the original kernel~14! in the simplified form

PI~Q;t !51/tnpI~Q/t1G!, ~A7!

where pI(y)5e2nWI„2@]V/]I #21(y/e)…u]V/]I u21 and G
5DV. The Fourier transform of kernel~A2! is therefore
given by

K̃ I~F;t !5(
k

p̃I~ tF!exp@ i F•~Gt22pk!#. ~A8!

Then the formula

(
k

exp~2 i2pF•k!5(
j

d~F2 j ! ~A9!

leads to

K̃ I~F;t !5(
j

p̃I~ t j !exp~ i t G• j !d~F2 j !. ~A10!

This result, coupled with Eqs.~A3! and~A6!, finally leads to

f ~ t !5(
j

ur̃0~ j !u2p̃I~ t j !exp~ i t G• j !. ~A11!

As we can see, the behavior of fidelity in the limitt→` is
given by the tails of the Fourier transform of the kernelpI .
ky

s.

R

ev

03621
The origin of the kernel is the projection of the perturbed t
onto unperturbed ones, and we expect singularities in su
projection. These singularities induce a power law decay
the tails of the Fourier transform of the kernel and thus
responsible for the asymptotic power law decay of fidelit

In the single degree of freedom situation, the typical s
gularity of projection to be encountered leads topI(y)}uy
2y0u21/2, as it can also be seen in the twist map exam
~22!. This type of singularity leads to the Fourier transfor

p̃I~F!}F21/2exp~2 iFy0!. ~A12!

Such an expression leads to following asymptotic fide
decay:

f ~ t !2 f ~`!5t21/2(
j Þ0

ur̃0~ j !u2 j 21/2exp@ i j ~Gt2y0!#

5t21/2z~b!, ~A13!

where b52Gt1y0 and z is some periodic function with
period 2p. We note that Eq.~A13! gives an overall}t21/2

fidelity decay together with a superimposed oscillatory b
havior. This is the typical asymptotic relaxation of fidelity fo
a single torus in integrable systems with a single degree
freedom. If one considers a finite interval of actionsn I , the
decay~A13! must be averaged overn I , and therefore, due to
the oscillatory nature of Eq.~A13!, it can be faster thatt21/2.
The extension to the many-dimensional case requires a c
plex analysis of the singularities encountered in the proj
tion of the perturbed tori onto the unperturbed ones and
beyond the scope of the present paper.
ett.
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